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VIRAL DISINFORMATION…

Nicki Minaj, Ars Technica, Vox, Vice, SciAm, Jimmy Kimmel Live 
3

https://twitter.com/NICKIMINAJ/status/1437532566945341441
https://arstechnica.com/information-technology/2021/10/hacker-x-the-american-who-built-a-pro-trump-fake-news-empire-unmasks-himself/
https://www.vox.com/science-and-health/2017/6/17/15817056/alex-jones-megyn-kelly-lies-nbc-psychology-illusory-truth
https://www.vice.com/amp/en/article/4avjqb/conspiracy-theories-about-facebook-outage-spread-even-without-facebook?__twitter_impression=true
https://www.scientificamerican.com/article/fake-online-news-spreads-through-social-echo-chambers/


CNN, Forbes, TechCrunch, Mike Cernovich, NPR

…HAS REAL-WORLD CONSEQUENCES!
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https://www.cnn.com/2020/03/23/africa/chloroquine-trump-nigeria-intl/index.html
https://www.forbes.com/sites/tarahaelle/2020/03/23/man-dead-from-taking-chloroquine-after-trump-touts-drug-for-coronavirus/
https://techcrunch.com/2020/10/19/tiktoks-qanon-ban-has-been-buggy/
https://www.bbc.com/news/blogs-trending-38156985
https://www.npr.org/sections/thetwo-way/2017/06/22/533941689/pizzagate-gunman-sentenced-to-4-years-in-prison


PLATFORMS ARE TRYING INTERVENTIONS…

Social Science One + FB, 2020 Election Research, Washington Post

5

https://socialscience.one/blog/unprecedented-facebook-urls-dataset-now-available-research-through-social-science-one
https://medium.com/@2020_election_research_project/a-proposal-for-understanding-social-medias-impact-on-elections-4ca5b7aae10
https://www.washingtonpost.com/technology/2018/07/06/twitter-is-sweeping-out-fake-accounts-like-never-before-putting-user-growth-risk/


…WITH LITTLE SUCCESS

NYT, MIT, NBC News, Sanderson+, (2021)6

https://www.nytimes.com/2021/10/23/technology/facebook-india-misinformation.html
http://vis.mit.edu/covid-story/
https://www.nbcnews.com/tech/tech-news/tiktok-audio-gives-new-virality-misinformation-rcna1393
https://misinforeview.hks.harvard.edu/article/twitter-flagged-donald-trumps-tweets-with-election-misinformation-they-continued-to-spread-both-on-and-off-the-platform/
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WHICH POLICY INTERVENTIONS?

• Tweets that violate terms of service 
are ‘intervened upon’ by the 
platform in various ways

• Two types of interventions: 
warning labels and removal

• Not much literature available on 
cross-platform causal effects of 
such policies despite their 
widespread deployment across 
politics and public health



WHAT IS THE IMPACT OF INTERVENTIONS?

Expectation: Reduced Engagement Reality: Increased Engagement
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• Naive estimates by Sanderson et. 
al (2021), indicate strong 
Streisand effect!

• Wait does this mean 
interventions are bad?!

• What tweets are we really 
comparing here and what are 
their features like?
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CAUSAL EFFECTS
HOW DID TWITTER’S INTERVENTIONS AFFECT TRUMP?

• The intervened and non-
intervened tweets are very 
different -> biased estimate

• Causal Inference 101: Matching 
helps reduce biased estimates

• Let’s Match Tweets!

• Cool new matching technique by 
Hazlett and Xu (2019) called tjbal
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CAUSAL EFFECTS
HOW DID TWITTER’S INTERVENTIONS AFFECT TRUMP?

• Trajectory Balancing for matching 
the tweets using two methods:

• Mean Balancing

• Kernel Balancing

• Also balanced on toxicity scores, 
topics, sharing by elite users 

• But we don’t know intervention 
time so we need to guess when 
Twitter intervened…

ATT = 𝔼[Y1
it − Y0

it |Gi = 1]

𝔼[Y0
it |Yi,pre] = (1 Yi,pre)T θt

Requires Linearity in Prior Outcomes (LPO)

𝔼[Y0
it |Yi,pre] = ϕ(Yi,pre)T θt ; t > T0

1
Ntr ∑

Gi=1

Yi,pre = ∑
Gi=0

wiYi,pre

Relaxes Linearity in Prior Outcomes (LPO)



CHECKING PRE-TREATMENT BALANCE
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CROWDTANGLE RESULTS - CROSS-PLATFORM MATCHES

• Tweets are shared beyond just 
platform of origin, Twitter 

• What are the effects of interventions 
across different platforms? 

• Use CrowdTangle to collect 
cross-platform data re: tweets 

• Can track “hard” interventions! 



FACEBOOK - SOFT INTERVENTIONS
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Soft Interventions cause a decrease in FB posts! 



FACEBOOK - HARD INTERVENTIONS
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Hard Interventions cause a decrease in FB posts too! 



PROBLEMS WITH CROWDTANGLE DATA COLLECTION

• Collected data by searching for tweet 
URL and exact text match for tweets 

• Exact text match is not really exact… 

• Returns posts as search results from 
before the tweet was actually created 

• To top it off, we are required to delete 
locally collected post content that is 
banned on-platform — no local copies to 
qualitatively check post content! 

• How to fix this?



PROBLEMS WITH CROWDTANGLE DATA COLLECTION

• Fit regression model to estimate fixed False Positive Rate 
for search results on each tweet 

• Remove the false matched posts from the original tweets 

• Reestimate trajectories based on correct matches 

• Unfortunately not left with enough reliable data on hard 
interventions to estimate confidence intervals…



FIXING CROWD TANGLE DATA COLLECTION

before



FACEBOOK - SOFT INTERVENTIONS
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REDDIT - SOFT INTERVENTIONS

Soft Interventions cause an increase in Reddit posts… 

t0 t1 



…but with mostly negative 
sentiment!

normalized negative sentiment score 



PROBLEMS WITH CROWD TANGLE DATA COLLECTION

• Fit regression model to estimate fixed False Positive Rate 
for search results on each tweet 

• Remove the false matched posts from the original tweets 

• Reestimate trajectories based on correct matches 

• Unfortunately not left with enough reliable data on hard 
interventions to estimate confidence intervals… except for 
one thing!



FACEBOOK - HARD INTERVENTIONS

• Run a “placebo test” 

• Sample 30 unintervened tweets at 
random, pretend they are treated 
and estimate ATT through tjbal — null 
distribution 

• Then do the same for the actual hard 
intervention since time of intervention 
is known! 

• Able to estimate p-values and find 
that hard interventions do increase 
number of FB posts about the tweet!
***

***



SUMMARY

• There was a milder Streisand effect on Twitter than originally 
thought, but a statistically significant one nevertheless 

• Interventions on a single platform have a downstream effect on 
the ecosystem; cross platform effects estimation has its own set of 
challenges 

• Need more detailed analysis of post and comment contents to 
understand broader impact of interventions 

• We need more evidence-based evaluation for policy interventions 
deployed by social platforms!
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